
 1

EECS 2011: Assignment 1
June 5, 2017

8 % of the course grade

Due: Monday, June 19, 2017, 19:00 EDT

Motivation

The purpose of this assignment is to evaluate various implementations of List interface

in terms of their performance for different operations

Introduction
List1 is an ordered collection (also known as a sequence). The user of this interface has

precise control over where in the list each element is inserted. The user can access

elements by their integer index (position in the list), and search for elements in the list.

The List interface provides four methods for positional (indexed) access to list

elements, two methods to search for a specified object, and two methods to efficiently

insert and remove multiple elements at an arbitrary point in the list.

Note that these operations may execute in time proportional to the index value for some

implementations (the LinkedList class, for example).

Description
In this assignment, you will have to write two implementations of List interface, one

that uses arrays, and one that uses doubly-linked lists. After that, you will have to test

the performance of several operations when using your implementations.

Part 1

Implement the following public methods in the two implementations (called

A1ArrayList and A1LinkedList) of List interface:
boolean add(E e)

void add(int index, E element)

void clear()

E remove(int index)

boolean remove(Object o)

String toString() (see Java API: AbstractCollection)
int size()

The classes should use generics. The array implementation should have dynamic resizing

(double the size when growing and halve the size when less than 25 % of the capacity is

used); and the linked list implementation should use doubly linked lists. Also, the

behaviour of these methods should be equivalent to that of Java Standard Library’s

classes ArrayList or LinkedList. Please refer to the corresponding descriptions

online.

1 https://docs.oracle.com/javase/8/docs/api/java/util/List.html

 2

For the rest of the methods of the interface, you may just throw an exception (note, that

you might have to implement certain methods anyways, in order to execute the next part):
 public type someUnneededMethod() {

 throw new UnsupportedOperationException();

 }

Of course, you are free to implement any private or protected methods and classes as you

see fit. However, you may not have any public methods other than the ones mentioned

(or the ones present in the interface or its superclasses).

Part 2

Name your class ListTester. Use both of your list implementations and compare

them to the corresponding Java library implementations.

For numbers N = {10, 100, 1000, 10000, 100000, 1000000}
a) Starting with empty lists of Number-s, measure how long it takes to insert N integer

numbers (int, or Integer) with random values ranging from 0 to 10N into the lists,

when inserting them at the beginning, at the end, and into a random location of the list

(use indices to indicate where to do the insertion (e.g., list.add

(randomLocation, number)).

b) Starting with non-empty lists of N items (e.g., from part a), measure how long it takes

to remove N numbers from the lists when removing them from the beginning, from the

end, and from a random location of the list (use indices to indicate the location).

c) Starting with non-empty lists of N items (same as part b), measure how long it takes to

remove N random numbers (with values between 0 and 10N) from the four lists (some

values might not exist in the list!).

At the end, produce the following table (the timing values below are just placeholders

and do not relate to any real measurements):

N = 10: ms to Ins. start, end, rnd; Rmv. start, end, rnd; Rmv. by value

ArrayList 12 345 678 12 345 678 123456

A1ArrayList 12 345 678 12 345 678 123456

Linkedlist 12 345 678 12 345 678 123456

A1Linkedlist 12 345 678 12 345 678 123456

N = 100: ms to Ins. start, end, rnd; Rmv. start, end, rnd; Rmv. by value

…

N = 1000: ms to Ins. start, end, rnd; Rmv. start, end, rnd; Rmv. by value

…

<repeat for all values of N>

Save the result of your program execution in a file testrun.txt and submit it together with

your other files.

NOTES:

 3

1. Make sure you reset the timer (or save the intermediate time before the next

measurement); i.e., make sure you measured time contains only the time to perform one

set of operations that was supposed to be timed.

2. In case the operations for larger N numbers take too long (e.g., more than 30 s) you

may reduce the number to a smaller one or eliminate it (so that you will have a range

from, say, 1 to 100000).

3. Do not use package-s in your project (put your classes in a default package). Using

packages will cost you a 20 % deduction from the assignment mark.

4. Name your classes as specified. Using incorrect names will cost you a 20 % deduction

from the assignment mark.

5. Some aspects of your code will be marked automatically (e.g., how it handles

boundary cases and error conditions). It is also imperative you test your classes. If any of

the java files that you submit do not compile, the whole submission will be given a grade

of zero, regardless of how trivial the compiler error is.

6. Your code should include Javadoc comments. Also, part of your mark will be based on

coding style.

Submission
Submit your work using the submit command. Remember that you first need to find

your workspace directory, then you need to find your project directory.
submit 2011 a1 <list of your files>

(The directory will be created soon).

You can check the usage examples by executing man submit.

Alternatively, you may use the web form at
https://webapp.eecs.yorku.ca/submit/index.php

You only need to submit 4 files; optionally, you may also submit a file readme.txt

containing comments for the marker.

Late penalty is 20 % per day. Submission 5 days or more after deadline will be given a

mark of zero (0). Contact the instructor in advance if you cannot meet the deadline

explaining your circumstances.

Academic Honesty
Direct collaboration (e.g., sharing code or answers) is not allowed (plagiarism detection

software will be employed). However, you’re allowed to discuss the questions, ideas,

approaches you take, etc.

 4

State all sources you use (online sources, books, etc.). Using textbook examples is

allowed.

